Bia Boccardi

MPIfR - Bonn

MM-VLBI OBSERVATIONS OF CYGNUS A

(Collaborators: T.P. Krichbaum, U. Bach, V. Karamanavis, E. Ros, F. Mertens, J.A. Zensus)

12th EVN Symposium - Cagliari, 7-10 October 2014

Relativistic jets - Open problems

How are jets launched? Where and how are they accelerated? What is the collimation mechanism?

Models and simulations predict crucial processes to
happen within \sim tens/hundreds R_{S}

Observational constraints still poor on these scales!

Why Cygnus A?

Observing Cygnus A with mm-VLBI: angular resolution down to $\sim 45 \mu$ as \Rightarrow Linear scale: ~ 48 milli-pc ~ 200 Rs!

- Detailed imaging of emission regions which appear self-absorbed at longer wavelengths.
- Transverse resolution of both jet and counter-jet! \Rightarrow study of collimation and stratification.

Kinematic analysis at 7 mm

- Acceleration in the inner 0.7 pc of the jet
- $\beta_{\text {app }}^{\max }=1.24 \pm 0.23 \Rightarrow \theta<77^{\circ}$
- Drastic drop of speed in the outer jet. Intrinsic deceleration?
- Counter-jet appears stationary.

TRANSVERSE STRUCTURE IN RELATIVISTIC JETS

High resolution imaging \Rightarrow

Jets are not homogeneous outflows, but show complex stratification and significant transverse motion!

Examples: M87, 3C84, Mrk 501, 3C273.

Observed limb brightening explained with spine+sheath structure of unclear origin...

- Direct result of jet formation process: Blandford \& Paine + Blandford \& Znajek (e.g. Xie+ 2012)
- Kelvin Helmholtz instabilities (e.g Lobanov \& Zensus 2001) or interaction of the walls of the jet with the ambient medium.

Ridge line study at 7 Mm

7 mm map from November 2009, restored with beam FWHM of 0.1 mas

- Maps restored with circular beam of 0.15 mas FWHM.
- Sliced transversally pixel by pixel (every 0.03 mas).
- Gaussian fit of the double peaked intensity profiles.

Double ridge line structure present both in jet and counter-jet!

Apparent deceleration due to de-boosting of the spine?

Flux density is decreasing during acceleration!

For $\theta=75^{\circ}$, the flow gets de-boosted $(\delta<1)$ when $\beta>0.5$.

From the kinematics:
\rightarrow De-boosting starts within the inner 0.3 pc of the jet.

AT LOWER FREQUENCIES?

OpENING ANGLE

Are jet and counter-jet really intrinsically symmetric?

3 MM MAPS

Transverse structure at 3 Mm

7 and 3 mm maps from
November 2009 and October 2009, respectively.

Beam FWHM 0.15 mas

- A single Gaussian is seen at 3 mm .

CONCLUSIONS

- A faster part of the flow emerges when imaging the base of the jet at 7 mm . Its acceleration is on sub-parsec scale.
- Cygnus A shows a limb brightened structure, arising very close to the central engine \rightarrow Direct result of jet formation process?
- Speeds measured in the outer jet and at lower frequency/resolution may reflect the speed of the slower layers.
- The apparent opening angle in jet and counter-jet is different \rightarrow Intrinsic asymmetry?
- At 3 mm , a single ridge line is seen and it lies between the 7 mm rails.

